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Abstract—This paper reveals a novel square-lattice photonic 
crystal fiber for dispersion compensation in a wide range of 
wavelengths. The 2-D finite difference frequency domain 
method (FDFD) with perfectly matched layers (PML) is 
used to investigate dispersion properties. It has been shown 
theoretically that it is possible to obtain high negative 
dispersion coefficient and confinement losses less than 10-5 
dB/m in the entire wavelengths band.   

Keyword—chromatic dispersion, dispersion compensation 
fiber, square-lattice PCF, confinement loss. 

I. INTRODUCTION 
The rapid development of the optical network and the 

increase in transmission rates imposes serious restrictions 
for residual chromatic dispersion in optical links. One of 
the best approach to minimize the penalty of chromatic 
dispersion for a large bandwidth of wavelengths is to use 
dispersion compensating fibers (DCF) [1]. The negative 
dispersion coefficient of conventional fiber is about D = -
100 (ps/nm.km) at 1550nm wavelength with high losses 
[2]. This limitation in dispersion is mainly due to practical 
reasons such as material stress between the doped core 
and cladding regions, doping level, nonlinearity, as well as 
coupling losses. On the other hand, photonic crystal fibers 
(PCFs), a pure silica optical fibers with tiny air holes 
embedded in the host silica matrix running along the 
propagation axis, have attracted considerable attention 
from the optical scientific community [3]. One of the 
appealing properties of PCFs is the fact that they can 
possess dispersion properties significantly different than 
those of the conventional optical fibers. A desirable 
property of PCFs is that, the additional design parameters 
of air hole diameter d and holes pitch Λ offer much greater 
flexibility in the design of dispersion to get the required 
application. By manipulating air hole diameter d and 
pitch Λ , in PCFs facilitate a complete control on its 
properties, such as negative dispersion. Several designs of 
dispersion compensating PCFs (DCPCFs) have been 
reported in the international literatures [4]. Typically, the 
air holes are arranged on the vertex of an equilateral 
triangle with six air holes in the first ring surrounding the 
core, this type is called the hexagonal PCF (H-PCF) or 
conventional PCF. Besides the hexagonal structures, other 
design structures such as square-lattice, honeycomb and 
octagonal-lattice have been proposed for the PCF. But 
still, the demand for a simple dispersion compensation 
PCF structure exists in order to realize high negative 
dispersion and low confinement loss. Previous designs are 
all based on triangular PCFs, and report on negative 

dispersion properties of square-lattice PCFs over E to L 
wavelength bands is very few [5]. 

 Various DCFs that were optimized to compensate for 
the dispersion in a single band, e.g., the S-band (1460-
1530 nm), C-band (1530-1565 nm), and L-band (1565-
1625nm), have been reported [6]. However, it is difficult 
for the DCF to compensate for dispersion over lower 
band, i.e. the E-band (1360-1460nm).  
In this paper, we propose a new kind of square-lattice 
PCF with five rings air holes for dispersion compensation 
over E to L wavelength bands. The designed square-
lattice PCF is based on dual concentric core refractive 
index profile, where the fiber supports two cores, namely 
central core and ring-core. The optical field transits to the 
ring-core after a particular wavelength [7]. We will 
investigate the loss and dispersion characteristics of the 
designed PCFs over E to L wavelength bands. There are 
three degrees of freedom; air holes diameter of the first 
ring, air holes diameter of second ring around the core 
and pitch of the lattice; those three parameters are 
adjusted separately and their influence on the dispersion 
curve is investigated. The calculated results show that our 
proposed PCF can simultaneously realize negative 
dispersion and low confinement losses in a wide 
wavelength range. This paper is organized as follows: In 
the next section, the theory of FDFD is described. In 
section III, it is focused on the PCF characteristics. In 
section IV, fiber geometry structure has been shown 
Finally,  numerical results are discussed in section V.  

 

II. ANALYSIS METHOD  
     The finite difference frequency domain (FDFD) is 
popular and appealing for numerical electromagnetic 
simulation due to its many merits. It has been one of the 
major tools for the analysis and understanding of PCFs. 
The discretization scheme can be derived from the 
Helmholtz equations or Maxwell’s equations directly. 
Now we use the direct discretization schemes first 
described for photonic crystal fibers by Zhu et al [8]. 
Now we use the direct discretization schemes described 
for photonic crystal fibers. Yee’s two-dimensional mesh 
is illustrated in Fig. 1; note that the transverse fields are 
tangential to the unit cell boundaries, so the continuity 
conditions are automatically satisfied. After inserting the 
equivalent nonsplit-field anisotropic PML in the 
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frequency domain, the curl Maxwell equations are 
expressed as:  
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where rμ  and rε  are the relative permittivity and 
permeability of the medium considered, λπ /20 =k  is the 
wave number in free space, 0/1 ωεσ js xx −= ,  

0/1 ωεσ js yy −= and σ is the conductivity profile. 
Assuming that the PCFs are lossless and uniform and the 
propagation constant along the z direction is β . Thus, the 
field variation along the propagation direction z is of the 
form )exp( zjβ− . The z-derivatives, z∂∂ / , can be replaced 
by βj−  in Maxwell’s equations and thus three 
dimensional equations can be solved using only a two 
dimensional mesh. Using the central difference scheme 
and zero boundary conditions outside of the anisotropic 
PML layers, the curl equations (1) can be rewritten in a 
matrix form which includes six field components. Then 
eliminating the longitudinal magnetic and electric fields, 
the eigenvalue matrix equation in terms of transverse 
magnetic fields and transverse electric fields can be 
obtained as: 
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Where the Q and P are highly sparse coefficient matrices. 
The order and the nonzero elements in them are reduced 
and effectively stored in sparse format, so the 
computation efficiency is improved greatly. The complex 
propagation constant β and the transversal magnetic or 
electric field distribution can be solved out quickly and 
accurately by a sparse matrix solver [9]. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 

        Figure 1.  Unit cell in Yee’s 2D-FDFD mesh 

III. PHOTONIC CRYSTAL FIBER CHARACTERISTICS 

A. Chromatic Dispersion  
The chromatic dispersion D of a PCFs is easily 

calculated from the effn  value vs. the wavelength using the 
following [2]: 

2
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c
D eff−=                          (5) 

 in (ps/(nm.km)), where Re( effn ) is the real part of the 
refractive index, λ is the operating wavelength, and c is 
the velocity of light in a vacuum. The material dispersion 
can be obtained from the three-term sellmeier formula and 
is directly included in the calculation. In PCFs, the 
chromatic dispersion D is related to the additional design 
parameters like geometry of the air holes, pitch, and hole 
diameters. By optimizing these parameters, suitable 
guiding properties can be obtained. 

 

B. Confinement Loss 
Confinement loss is the light confinement ability within 

the core region. The increase of air hole rings help the 
confinement of light in the core region, which results in 
smaller losses than those with less air hole rings. Also, 
increasing the air holes diameter results in the increasing 
of the air filling fraction and consequently decreasing the 
loss. The confinement loss cL is then obtained from the 
imaginary part of 

effn as follows [2]:  
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)1020(
0

6

effc nkL ×=                       (6)    

With the unit dB/m, where Im (
effn ) is the imaginary part 

of the refractive index, λπ /20 =k  is the wave number in 
the free space.  

IV. DESIGN MODEL 
The proposed PCF is made of pure silica and has a 

square array of air holes running along its length. This is 
an index guiding PCF. The transverse cross-section of the 
PCF is shown in Fig. 2, where Λ is the pitch of the lattice, 

1d is the air hole diameter of first ring, 2d is the air-hole 
diameter of second ring and d  is the air hole diameter in 
other rings. The air holes of the first ring are relatively 
large, since it is known that an increase in the air hole 
diameter of the first ring causes the dispersion coefficient 
to decrease. The air holes of the second ring are relatively 
smaller, because a ring of reduced diameter induces a 
change in the slope of the evolution of the effective index 
versus wavelength [7]. The total number of air hole rings 
was chosen to be five in order to simplify as much as 
possible the structural composition of the PCF. Fig.3 and 
Fig.4 show the effective index profile over E to L 
wavelength bands and the mode field distribution of the 
PCF at wavelength of 1550nm. The mode field 
distribution has its maximum amplitude at the center core 
region.  Since the mode field of the PCF is largely inside 
the inner core, the dispersion characteristic of the PCF is 
more sensitive to the inner core structure. The design 
process of PCF requires the following steps. The essential 
geometric parameters of the PCF configuration, included 
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shape and size of the air-holes, the number of air-hole 
rings and background material are chosen in the first step. 
Then mode analysis refers to evaluation of the PCF guided 
modes and selecting a well confined mode is performed in 
the next step. The square-lattice PCF characteristics of the 
selected mode; e.g. effective index, dispersion, and loss 
are calculated in frequency analysis [10]. 

V. NUMERICAL RESULT AND DISCUSSION  
The square-lattice PCF employs three different 

parameters to produce relatively high negative dispersion 
in a wide wavelength range. The dispersion curve of the 
designed PCF with md μ35.1= , md μ8.01 = , md μ45.02 = , 
and mμ36.1=Λ  from E to L band is shown in Fig. 5. As it 
can be seen, the designed square-lattice PCF has negative 
dispersion of  -100.4 ~ -130.32 (ps/nm.km) over E-band. 
In addition , the PCF shows negative dispersion of -130.3 
~ -138(ps/nm.km), -137.8 ~ -138.1 (ps/nm.km), -138.1 ~     
-134 (ps/nm.km) over S, C and L bands respectively.  

Table I, II, and III summarize the dispersion variation in 
the square-lattice PCF with altering the hole diameters of 
the inner two rings and pitch of the lattice ; 1d , 2d , and Λ  
respectively. With respect to Tables I, II, and III, the 
lowest negative dispersion variation is achieved in the C 
band for square-lattice PCF with the following 
parameters; md μ35.1= , md μ8.01 = , md μ45.02 = , and 

mμ36.1=Λ . It has ultra-flattened negative dispersion 
with slop=0.00857 (ps/ 2nm /km) over C band.  

 
 
 
 
 
 
 
 

 
 

 
                Figure 2.   Cross section of square-lattice PCF 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

Figure  3.  Effective index curve of the PCF as a function of 
wavelength. md μ35.1= , md μ8.01 = , md μ45.02 = , and mμ36.1=Λ .  

 
 
 

 
 

 
 
 
 
 

 
Figure  4.  Transversal field intensity distribution at a wavelength of 

nm1550=λ for the fundamental guiding mode. md μ35.1= , 
md μ8.01 = , md μ45.02 = , and mμ36.1=Λ  

So, dispersion is more sensitive to the inner hole 
diameter; 1d that play important role in the inner core 
structure. From Table I, it can be seen that the absolute 
values of the negative dispersion coefficient increase 
considerably as 1d increase. Also, 2d  is the important 
parameter of the square-lattice PCF to achieve negative 
dispersion over a wide wavelength range. From Table II, it 
is found that by decreasing 2d , larger negative dispersion 
coefficient and better dispersion slope compensation are 
possible. From Table III, it is clearly seen that the 
parameter Λ dominantly influences the dispersion level 
(the dispersion increases as Λ  increases), but it has little 
effect on the dispersion flatness. The rings with air hole 
diameters of d  is as farther from central core, it does not 
have significant effect on dispersion.  

The loss characteristics of square-lattice PCF with 
md μ35.1= , md μ8.01 = , md μ45.02 = ,and mμ36.1=Λ , 

within the wavelength range of 1360-1630 nm is shown in 
Fig. 6. With respect of Fig. 6, the loss of the designed 
square-lattice PCF is 0.00(dB/km) over E-band. In 
addition, the square-lattice PCF shows the losses of 0.00~ 
0.25 310−× (dB/km), 0.25 310−× ~ 0.54 310−× (dB/km), 
0.54 310−× ~ 1.68 310−× (dB/km) over S, C, and L bands 
respectively. Tables IV, V, and VI summarize the losses 
of the square-lattice PCF with altering the hole diameters; 

1d , 2d and pitch of the lattice Λ  respectively, at 
wavelength of 1550nm.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 Figure  5. Dispersion curve of the PCF as a function of wavelength. 

md μ35.1= , md μ8.01 = , md μ45.02 = , and mμ36.1=Λ  
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TABLE I. 

DISPERSION OF THE SQUARE-LATTICE PCF WITH 
DIFFERENT 1d OVER E-BAND TO L-BAND, 

md μ35.1= , md μ45.02 = , and mμ36.1=Λ  

 
TABLE II. 

DISPERSION OF THE SQUARE-LATTICE PCF WITH 
DIFFERENT 2d OVER E-BAND TO L-BAND, 

md μ35.1= , md μ92.01 =  , and mμ36.1=Λ  

 
 

TABLE III. 
DISPERSION OF THE SQUARE-LATTICE PCF WITH DIFFERENT 

Λ OVER E-BAND TO L-BAND, md μ35.1= , md μ92.01 =  , and 
md μ45.02 =  

 
 

As Table IV shows, the loss increases with increasing 
the hole diameter of the inner ring; 1d . It is due to the 
increment of the effective core area by increasing 1d . On 
the other hand, the loss decreases with increment of 2d . 
(see Table V). 

 

 
 
 
 
 
 
 
 
 
 
 

 
 
 

Figure 6.  Loss curve of the PCF as a function of wavelength.   
md μ35.1= , md μ8.01 = , md μ45.02 = , and mμ36.1=Λ  

It can be explained by the air filling fraction parameter, 
increment of 2d result in the increment of the air filling 
fraction, and consequently the decrement of the loss. From 
Table VI, it is found that loss is increased  with increasing 
pitch when other parameters are remained same. The loss 
remains below mdB /10 5− from 1.36 mμ  to 1.63 mμ  
wavelength for choosing five air hole rings.  

In order to see the difference with different geometry 
structures, we compare dispersion between square-lattice 
PCF and triangular one with the same structure. From 
Table VII, we can see that the difference of dispersion 
between these two types of  PCFs is not high, especially at 
long wavelength. Moreover, the dispersion value obtained 
with square-lattice PCF is between – 160.9 and -169.5 
(ps/nm.km) with corresponding wavelength from 1.36 mμ  
to 1.63 mμ , while -81.2 and -235.7 (ps/nm.km) for 
triangular one in this range. This indicate that proposed 
square-lattice PCF can achieve better dispersion 
compensation with lower slope than triangular one over 
C-band. 

 
TABLE  IV. 

LOSS OF THE SQUARE-LATTICE PCF WITH DIFFERENT 1d  
AT A WAVELENGTH OF nm1550=λ . md μ35.1= , md μ45.02 = , 

and mμ36.1=Λ  

 

1d          
( mμ ) 

 
Loss          

(dB/km) 

0.8 310361.0 −×  

0.84 310505.0 −×  

0.88 310866.0 −×  

0.92 31027.1 −×  

 
 
 

1d      
)( mμ  

Dispersion 
(ps/nm/km) 

E-band 

Dispersion  
(ps/nm/km) 

S-band 

Dispersion  
(ps/nm/km) 

C-band 

Dispersion  
(ps/nm/km) 

L-band 

 
0.8 

-100.4 ~ 
-130.2 

 

-130.3 ~     
-138 

-137.8 ~     
-138.1 

-138.1 ~     
-134 

 
0.84 

-109.08~ 
-147.5 

-147.5  ~    
-156.6 

-156.7 ~     
-156.3 

-156.3 ~    
-150.09 

 
0.88 

-139.7~ 
-182.9 

-182.9 ~    
-183.2 

-183.2 ~    
-178 

-178 ~       
-161 

 
0.92 

-160.9~ 
-213.6 

-213.7 ~    
-205.5 

-205.5 ~     
-193.1 

-193.1 ~     
-169.5 

2d     
)( mμ  

Dispersion 
(ps/nm/km) 

E-band 

Dispersion  
(ps/nm/km) 

S-band 

Dispersion  
(ps/nm/km) 

C-band 

Dispersion  
(ps/nm/km) 

L-band 

0.45 -160.9~ 
-213.6 

-213.7 ~     
-205.5 

-205.6~ 
-193.1 

-193.1~ 
-169.5 

   0.5 -64.6~ 
-143.1 

-143.12~ 
-190.9  

-191~ 
-207.3 

-207.3~ 
-221.5 

 
0.55 

-17.84~ 
-74.4 

-74.5~ 
-121.1 

-121.2~ 
-144.1 

-144.1~ 
-180.02 

 
0.6 

4.44~ 
-37.44 

-37.44~ 
-74.3 

-74.4~ 
-94 

-94~ 
-128/9 

Λ      )( mμ  
Dispersion 
(ps/nm/km) 

E-band 

Dispersion  
(ps/nm/km) 

S-band 

Dispersion  
(ps/nm/km) 

C-band 

Dispersion  
(ps/nm/km) 

L-band 

 
1.36 

-160.9~      
-213.6 

-213.7~       
-205.5 

-205.6~       
-193.1 

-193.1~       
-169.5 

 
1.38 

-169.4~      
-209.88 

-209.88~      
-192.63 

-192.63~      
-177.6 

-177.6~       
-153.24 

 
1.4 

-141.3~       
-199.6 

-199.6 ~      
-195.6 

-195.6~       
-184 

-184~        
-159.9 

 
1.6 

-97.88~       
-96.62 

-96.62~       
-82.5 

-82.6~        
-75.22 

-75.22~       
-63.5 
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TABLE  V. 
LOSS OF THE SQUARE-LATTICE PCF WITH DIFFERENT 2d  

AT A WAVELENGTH OF nm1550=λ . md μ35.1= , md μ92.01 = ,  
and mμ36.1=Λ  

 
 
 
 
 
 
 

 
 

 
 

 
 

TABLE  VI. 
LOSS OF THE SQUARE-LATTICE PCF WITH DIFFERENT Λ  

AT A WAVELENGTH OF nm1550=λ . md μ35.1= , md μ45.02 = , 
and md μ92.01 =  

 
 
 

 
 
 
 
 
 
 
 

 
 

VI. CONCLUSION             
   
  In this paper, a square-lattice PCF for dispersion 
compensation is proposed. From the numerical simulation 
results, it is found that it is possible to obtain larger 
negative dispersion, better dispersion slope, and low 
confinement loss in the entire E+S+C+L wavelength 
telecommunication bands. Another main advantage is 
that, compared with previously presented square-lattice 
PCFs, the design procedure for this proposed novel  
square-lattice PCF structure could be more efficient and 
easier because relatively fewer geometrical parameters 
are need to be optimized.  Thus, we can choose the 
appropriate geometric parameters to achieve the desirable 
dispersion compensation over different communication 
bands. Take all things to account; we believe that our 
proposed PCF will be useful in dispersion compensation 
ultra-broadband transmission application. 
 
 
 
 

TABLE VII. 
DISPERSION OF THE SQUARE-LATTICE PCF AND 

TRIANGULAR LATTICE PCF OVER E-BAND TO L-BAND, 
md μ35.1= , md μ92.01 = , md μ45.02 = , and mμ36.1=Λ  
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2d          
( mμ ) 

  
Loss            

(dB/km) 

0.45 31027.1 −×  

0.5 310621.0 −×  

0.55 310261.0 −×  

0.6 310124.0 −×  

Λ            
( mμ ) 

    Loss                 
(dB/km) 

1.36 210127.0 −×  

1.38 210139.0 −×  

1.4 210155.0 −×  

1.6 210790.0 −×  

structure    
of PCF 

Dispersion  
(ps/nm/km) 

E-band 

Dispersion  
(ps/nm/km) 

S-band 

Dispersion  
(ps/nm/km) 

C-band 

Dispersion  
(ps/nm/km) 

L-band 

Triangular 
lattice 

-81.2 ~       
-158.5 

-158.5 ~     
-202.7 

-202.7 ~    
-218.6 

-218.6 ~    
-235.7 

Square  
lattice 

-160.9 ~      
-213.6 

-213.7 ~    
-205.5 

-205.5 ~     
-193.1 

-193.1 ~     
-169.5 
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